
O
w
O
a

b

c

A

K
C
D
N
O

C

1

e
l
i
w
e
t
f
t

h
R

SoftwareX 27 (2024) 101871 

A
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

penHFDIB-DEM: An extension to OpenFOAM for CFD-DEM simulations
ith arbitrary particle shapes
ndřej Studeník a,c, Martin Isoz a,b,∗, Martin Kotouč Šourek c, Petr Kočí c

Institute of Thermomechanics of the Czech Academy of Sciences, Dolejškova 5, Prague 182 00, Czech Republic
University of Chemistry and Technology, Prague, Department of Mathematics, Informatics and Cybernetics, Technická 5, Prague 166 28, Czech Republic
University of Chemistry and Technology, Prague, Department of Chemical Engineering, Technická 5, Prague 166 28, Czech Republic

R T I C L E I N F O

eywords:
omputational fluid dynamics (CFD)
iscrete element method (DEM)
on-spherical particles
penFOAM

A B S T R A C T

Fluid flows containing dispersed particles are abundant in both nature and industry. Simulating such flows,
especially with high volumetric fractions of the dispersed solid phase, is challenging due to the complexity of
solid–fluid and solid–solid interactions. In this paper, we introduce OpenHFDIB-DEM, an open-source software
that couples computational fluid dynamics (CFD) with hybrid fictitious domain immersed boundary method
(HFDIB) and discrete element method (DEM). The software is developed as an extension of the OpenFOAM
library. The main contribution lies in a custom DEM implementation that is fully integrated in the OpenFOAM
framework and allows for CFD-DEM simulations of various flows with arbitrarily shaped solids defined by
triangulated surfaces in stereolithographic (STL) format.

ode metadata

Code metadata description Metadata
Current code version 2.6
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-24-00378
Permanent link to Reproducible Capsule https://codeocean.com/capsule/5797185/tree
Legal Code License GNU-GPLv3
Code versioning system used git
Software code languages, tools, and services used C++, MPI, GNU Make
Compilation requirements, operating environments OpenFOAM-v8
If available Link to developer documentation/manual http://docs.isoz.eu/openHFDIB-DEM/2.6/
Support email for questions openhfdib-dem@it.cas.cz

. Motivation and significance

Software coupling computer fluid dynamics (CFD) with the discrete
lement method (DEM) enables high-fidelity simulations of particle-
aden flows, a phenomenon abundantly present in both natural and
ndustrial processes. Here, we are particularly interested in situations
here the solids are distributed so densely that they encounter both
ach other and the boundaries of the containing device. Furthermore,
he fluid and solid phase are mutually affected. This situation occurs,
or example, in wet granulation [1], food processing [2], fluidiza-
ion [3], or in catalytic material deposition in monolithic reactors [4].

DOI of original article: https://doi.org/10.1016/j.powtec.2024.120067.
∗ Corresponding author at: Institute of Thermomechanics of the Czech Academy of Sciences, Dolejškova 5, Prague 182 00, Czech Republic.
E-mail address: isozm@it.cas.cz (Martin Isoz).
URL: https://www.it.cas.cz/en/d4/l041/ (Martin Isoz).

Under the conditions of interest, particle morphology plays a crucial
role in the integral flow behavior.

Due to their scientific and industrial potential, coupled CFD-DEM
solvers have become a prominent and rapidly evolving research topic
in the past decade. Currently, several solvers are available for both
open-source and commercial applications. The most well-known open-
source software are (i) CFDEM® project [5], which is an OpenFOAM
based CFD-DEM solver utilizing LIGGGHTS software [6] for DEM, and
(ii) YADE [7], a DEM solver that also can be linked to OpenFOAM. The
most prominent commercial ones are (i) ANSYS-Fluent® [8] coupled
with ANSYS-Rocky® [9], and (ii) Aspherix® [10] DEM and its extension
ttps://doi.org/10.1016/j.softx.2024.101871
eceived 16 July 2024; Received in revised form 23 August 2024; Accepted 29 August 2024
vailable online 9 September 2024 
352-7110/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://github.com/ElsevierSoftwareX/SOFTX-D-24-00378
https://codeocean.com/capsule/5797185/tree
http://docs.isoz.eu/openHFDIB-DEM/2.6/
mailto:openhfdib-dem@it.cas.cz
https://doi.org/10.1016/j.powtec.2024.120067
mailto:isozm@it.cas.cz
https://www.it.cas.cz/en/d4/l041/
https://doi.org/10.1016/j.softx.2024.101871
https://doi.org/10.1016/j.softx.2024.101871
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2024.101871&domain=pdf


Ondřej Studeník et al. SoftwareX 27 (2024) 101871 
Fig. 1. Solution domain 𝛺 comprising solid (𝛺s) and fluid (𝛺f ) phases. An exemplary particle is shown at two different times 𝑡 = 𝑡0 and 𝑡 = 𝑡1. Trajectory of the particle is
indicated by a dashed line.

CFDEM® Coupling, which is a commercial successor to the open-
source CFDEM® project. To our knowledge, YADE software enables
the application of convex polyhedral particles for DEM simulations.
ANSYS-Rocky® and Aspherix® enable consideration of surface mesh
base solids, however, the inner workings of the particle treatment are
not publicly available. Yet, all of the listed solvers allow for similar
capabilities, usually based on clusters of spheres or superquadrics, see,
e.g., [5,9,10].

The CFD-DEM solver OpenHFDIB-DEM presented here is imple-
mented as an extension to the widely recognized OpenFOAM [11]
library. On the CFD side, the solver is based on a variant of the
immersed boundary method called hybrid fictitious domain immersed
boundary method (HFDIB), originally described in [12,13] and mod-
ified as presented in [14]. This method allows for using a static CFD
mesh that is not re-arranged according to the moving solid objects.
For the discrete element method, we leverage an in-house developed
soft-DEM solver designed for arbitrarily shaped solids. The complete
OpenHFDIB-DEM framework has the ability to simulate pure DEM
applications (e.g. particle pouring) or fully coupled CFD-DEM applica-
tions (e.g. fluidized beds, coarse slurry flows) precisely without being
limited by the particle morphology. Uniquely among available open-
source codes, the particles are defined using stereolithographic (STL)
files with no further approximations or assumptions on convexity.
Furthermore, the complete CFD-DEM code is monolithic, which simpli-
fies data transfer required by fluid–solid interaction. To demonstrate
the computational efficiency and robustness of our presented exten-
sion, several OpenHFDIB-DEM library verification tests are presented,
including verification benchmarks for precision and large system sim-
ulations containing thousands of particles for both DEM and CFD-DEM
applications.

2. Model description

In general, we solve the balance equations for momentum and mass
in a finite, open, and connected domain 𝛺 ⊂ R3 and mark 𝛤 the
boundary of 𝛺. The computational domain 𝛺 is assumed to contain
a continuous fluid phase and a dispersed and moving solid phase. The
situation is illustrated in Fig. 1, where 𝛺s and 𝛺f represent the parts of
𝛺 occupied by the solid and fluid phases, respectively, and 𝛤sf is the
fluid–solid interface.

The overall goal of each CFD-DEM solver is to efficiently combine
the Eulerian (CFD) formulation of the balance equations in 𝛺 =
𝛺s ∪ 𝛺f with the Lagrangian (DEM) framework for particle motion,
that is, for updating 𝛺s. We leverage the OpenFOAM finite volume
C++ library [11] for CFD computations. To insert particles into the
computational domain, i.e., to perform the 𝛺 = 𝛺s ∪𝛺f operation, we
build on our previous work with the hybrid fictitious domain immersed
boundary method (HFDIB) [14]. The DEM part of the code also stems
from the work [14], but was significantly reformulated and will be
presented in more detail, with a special focus on solid–solid collision
dynamics.

2.1. Computational fluid dynamics

We consider an incompressible flow of a Newtonian fluid laden with
a dispersed solid phase undergoing an arbitrary rigid body motion. The
flow is solved in the full computational domain 𝛺 = 𝛺s ∪ 𝛺f and is
assumed to be governed by the standard incompressible Navier–Stokes
equations

(𝒖) = −∇𝑝̃ + 𝒇 ib
∇ ⋅ 𝒖 = 0

, (𝒖) = 𝜕𝒖
𝜕𝑡

+ ∇ ⋅ (𝒖⊗ 𝒖) − ∇ ⋅ (𝜈∇𝒖) (1)

where 𝒖 is the fluid velocity, 𝜈 kinematic viscosity, and 𝑝̃ kinematic
pressure. The forcing term 𝒇 ib is constructed to generate a fictitious
representation of 𝛺s inside 𝛺 and to bend the fluid flow around the
solid.

For the particular case of the hybrid fictitious domain-immersed
boundary method (HFDIB) [12–14], the forcing term is defined as

𝒇 ib = ceil(𝜆)𝒇̃ ib , 𝒇̃ ib = (𝒖ib) +∇𝑝̃, 𝜆 =

⎧

⎪

⎨

⎪

⎩

0 in 𝛺f
1 in 𝛺s
𝜆̃ ∈ (0, 1) in 𝛤sf

(2)

where 𝜆 is a color function defining the position of the immersed bodies
in the computational domain 𝛺 and 𝒖ib is the velocity of the moving
solid phase.

The exact definition of (𝒖ib) depends on the approach used to
enforce the boundary conditions on 𝛤sf . After spatial discretization of
𝛺, 𝛤sf cannot be assumed to be collocated with the resulting compu-
tational mesh, 𝛺ℎ. Therefore, to enforce the boundary conditions on
𝛤sf , its exact position with respect to 𝛺ℎ has to be reconstructed and
interpolation must be used to connect the two, i.e., to evaluate (𝒖ib).
For details on the exact procedure applied here, the reader is referred
to our previous work [14].

Eqs. (1) are discretized via the finite volume method and solved us-
ing a standard segregated approach originating from the PISO-SIMPLE
(PIMPLE) family of algorithms. The final solution algorithm is obtained
by plugging the DEM part into the CFD code and is described in detail
in Algorithm 2 in [14].

2.2. Discrete element method

The movement of individual solids 𝑖, which form the solid phase
𝛺s =

⋃𝑁
𝑖=1 𝑖, is described using the discrete element method (DEM).

DEM is a finite difference method based on the Lagrangian solution of
Newton’s second law of motion,

𝑚𝑖
d2𝒙𝑖
d𝑡2

= 𝒇 g
𝑖 + 𝒇 d

𝑖 + 𝒇 c
𝑖 , 𝐼𝑖

d𝝎𝑖
d𝑡

= 𝒕d𝑖 + 𝒕c𝑖 , (3)

where 𝑚𝑖 is the mass of 𝑖 of constant density 𝜌𝑖, and 𝒙𝑖, 𝝎𝑖, 𝐼𝑖 are
its centroid position, angular velocity and the matrix of its inertial
moments at time 𝑡, respectively. By 𝒇 and 𝒕 in (3), we denote the forces
and torques acting on  , respectively. In general, the presented solver
𝑖

2 



Ondřej Studeník et al.

c
o

c
o
i
s
m
v
s
𝒐
i
g
o


u

2

i
t
O
d
[
e
f
c
s

3

a
l
s
s
r
s
i
H
s
c
t
a
p

SoftwareX 27 (2024) 101871 
translation rotation
update accelerations 𝒂̄o = 1

𝑚

(

𝒇 g
CFD + 𝒇 d

CFD + 𝒇 c,o
DEM

)

𝜶̄o = 𝐼−1𝑖

(

𝒕dCFD + 𝒕c,oDEM

)

update velocities 𝒖∗ = 𝒖o + 1
2 𝒂̄

o𝛥𝑡 𝝎∗ = 𝝎o + 1
2 𝜶̄

o
𝑖 𝛥𝑡

𝝎∗ ⇝ 𝜔∗, 𝒐∗
translate and rotate 𝛥𝒙 = 𝒖∗𝛥𝑡 𝛥𝜃 = 𝜔∗𝛥𝑡

𝛥𝒙, 𝛥𝜃, 𝒐∗ ⇝ new position and orientation
update contact get𝒇 c,n

DEM get 𝒕c,nDEM
update accelerations 𝒂̄n = 1

𝑚

(

𝒇 g
CFD + 𝒇 d

CFD + 𝒇 c,n
DEM

)

𝜶̄n = 𝐼−1𝑖

(

𝒕dCFD + 𝒕c,nDEM

)

update velocities 𝒖𝑛 = 𝒖∗ + 1
2 𝒂̄

n𝛥𝑡 𝝎𝑛 = 𝝎∗ + 1
2 𝜶̄

n𝛥𝑡

(4)

Box I.

onsiders 𝑖 to be affected by gravity (g), drag (d), and contact (c) with
ther bodies or solid walls.

DEM solver is subcycled with respect to the flow solution, that is,
ontacts and solids positions are repeatedly evaluated with a single set
f gravity and drag forces. Integration of the DEM governing Eqs. (3)
tself works in a finite difference fashion similar to the LIGGGHTS
oftware [6]. First, the old, intermediate, and new time levels are
arked by superscripts (o), (*), and (n), respectively. Next, the angular

elocity 𝝎𝑖 of 𝑖 is split into an axis of rotation 𝒐𝑖 = 𝝎𝑖∕‖𝝎𝑖‖ and a
calar angular velocity 𝜔𝑖 = ‖𝝎𝑖‖ representing the rotation of 𝑖 around
𝑖. Using these concepts and omitting the subscript 𝑖 denoting 𝑖, the
ntegration over a single time step 𝛥𝑡 adheres to the following steps
iven in Box I where 𝛥𝒙 and 𝛥𝜃 are incremental translation and angle
f rotation of 𝑖, respectively. Update of the translational position of
follows the relation 𝒙n = 𝒙o + 𝛥𝒙. To update 𝑖 orientation, 𝛥𝜃 and

𝒐∗ are used to construct the Rodriguez rotation matrix [15], which is
used to rotate all the points of 𝑖 as described in detail in [14].

The given integration scheme splits the updates of forces, accelera-
tions, and velocities on one side, and the changes in solids position and
orientation on the other side. The former are updated with time step
𝛥𝑡∕2 at 𝑡o and 𝑡n, the latter with 𝛥𝑡 at 𝑡∗. Such an approach enables the
se of longer time steps.

.3. Contact treatment

We apply principles of the soft DEM in which a solid–solid overlap
s possible during contact, and the contact force is scaled according
o the magnitude of such an overlap [16]. The current version of
penHFDIB-DEM solver uses reformulation of our previous model [14],
etailed in Appendix A, that has a direct link to the Cundall and Strack
17] model with contact based on the Hertzian theory [18] and is
xtended by the dissipation term derived by Tsuji et al. [19]. The new
ormulation of the contact model provides parameterization and results
onsistent with the LIGGGHTS software [6] for contacts between two
pherical particles, as well as a spherical particle and a planar wall.

. Software description

The OpenHFDIB-DEM project comprises the main software library
nd two example solvers, pimpleHFDIBFoam and HFDIBDEMFoam. The
atter is designed solely for DEM applications, while the former is de-
igned for fully coupled CFD-DEM. The software can be installed on any
ystem where the OpenFOAM-v8 library is compiled, and the software
epository provides a full installation guide and basic tutorials for both
olvers. The code itself is strongly object-oriented and written predom-
nantly in C++ leveraging the features of the OpenFOAM library [11].
owever, to increase the code efficiency for large arrays, the C++

tandard library [20] was also utilized. To enable high performance
omputing (HPC), the code was optimized and fully parallelized using
he message-passing interface (MPI) [21]. In the following, we provide

brief description of the main library and its integration with the

Library architecture. OpenHFDIB-DEM library is implemented directly
in OpenFOAM and consists of the parent class OpenHFDIBDEM that
acts as an interface for solvers and as a database for the considered
solids. Each solid considered in the presented framework is defined
using four intertwined classes, which are directly linked to the parent
OpenHFDIBDEM class as illustrated in Fig. 2a. The four classes are
(i) geomModel, responsible for operations with particle geometry;
(ii) addModel, which takes care of registration of new solids into
the computational domain; (iii) contactModels, a class for detec-
tion and treatment of solid–solid collisions; and (iv) immersedBody,
accounting for the solid body movement within the computational
domain, including coupling with the fluid phase. Finally, the parent
OpenHFDIBDEM class is, for all the solids, responsible for memory
management and task redistribution in parallel run.

The current geomModel class (brown in Fig. 2a) considers three
geometry types: (i) shapeBased with a sole representative sphere-
Body for spherical solids defined via radius and center; (ii) stlBased
further divided into convexBody and nonConvexBody defined using
their surface representations (STL files); and (iii) clusterBased,
which is a general structure applied to solids passing through cyclic
boundary conditions regardless of their geometry. The geomModel
class is used to compute particle properties (mass, center of mass and
moment of inertia), particle transformations (translation and rotation),
and particle projections onto the CFD computational mesh.

On top of registering newly added solids, the addModel class is
suited to provide position and orientation for the solid when it is
initialized. While several particle addition methods are available (see
the green fields in Fig. 2a), the fundamental condition for a successful
particle addition is to locate a vacant space where a particle can be
added without collisions with other particles or walls. This is achieved
iteratively; when the particle geometry is projected to the given posi-
tion, it is investigated for any collisions using the contactModels
class. When no collision is detected, the particle is added to the given
position; otherwise, the particle is disregarded, or a new position is
sought, depending on the selected addition method. The currently
implemented addition methods contain options to switch between the
particle addition according to a given STL position and orientation,
and more complex modes that generate distributions with a given
solid volume fraction within a user-defined sub-domain. The addition
methods also enable repeated particle insertion control based on time
period or required volume fraction.

The contactModels class (purple in Fig. 2) is divided into two
derived classes to account for (i) particle–particle collisions treated
by particleContact, and (ii) particle–wall collisions treated by
wallContact. The physics behind the contact models is detailed
in Section 2. Both the contact treatment classes are enhanced by the
virtual mesh algorithm described in [22], which is contained in its own
class virtualMesh.

Finally, the immersedBody class is designed to account for the

impleHFDIBFoam solver with emphasis on the parallelization. body within the computational framework throughout the simulation

3 



Ondřej Studeník et al. SoftwareX 27 (2024) 101871 
Fig. 2. (a) OpenHFDIB-DEM library structure. (b) Linking the OpenHFDIB-DEM library to the pimpleFoam solver.

time. The class manages the particle geometry and contains methods
to evaluate acting forces (fluid coupling and buoyancy/gravity). The
particle’s position and rotation is updated by a numerical integration,
see Eqs. (4). The immersedBody class also enables different modes
of motion: fully coupled with the fluid, or prescribed particle rotation,
translation or both, or a static solid body.

Linking to a CFD solver. Coupling of the OpenHFDIB-DEM library with
the standard pimpleFoam solver of the OpenFOAM library is illustrated
in Fig. 2b. The solver structure is shown on the left, while the relevant
methods from OpenHFDIB-DEM are listed on the right and colored
according to the class they appertain to. The library is linked to the

solver at five different places. First, during the computation initializa-
tion, the OpenHFDIBDEM class needs also to be initialized. Second, at
the beginning of each CFD time step, the solids are re-projected in the
computational domain. Third, during the construction and solution of
the pressure equation (pEqn.H) inside the PIMPLE loop, the fluid–solid
coupling is repeatedly updated and the forcing term 𝒇 ib in Eqs. (1) and
(2) is updated. Fourth, after convergence of the PIMPLE loop, the solids
are either added or removed from the computational domain as driven
by the addModel class. Finally, at the end of each CFD time step,
the DEM loop is entered to resolve the solid movements and potential
solid–solid contacts.
4 



Ondřej Studeník et al.

.

SoftwareX 27 (2024) 101871 
Solver parallelization. The OpenHFDIB-DEM library is designed specif-
ically to take into account arbitrary polyhedral solids defined using
triangulated surfaces (STLs). The contact treatment for non-convex
polyhedral solids poses high demands on computational resources,
even though the applied algorithms are highly optimized, hence the
solver parallelization is necessary. The OpenFOAM library provides
MPI-leveraging, a domain-decomposition-based parallelization. It de-
composes finite-volume domains (meshes) into subdomains, where
each subdomain is assigned to one processor unit (CPU). During the
simulation, CPUs work independently and information is exchanged
only via processor–processor boundaries, that is, only between the
adjacent subdomains. However, this approach, hereafter marked as
CFD parallelization, is not suitable for contact treatment in DEM
where all contacts may be concentrated in a single subdomain. Another
bottleneck of CFD for DEM with complex STL-defined solids is data
transfer between processors enforced by a solid moving from one
subdomain to another.

The limitations of native OpenFOAM CFD parallelization were
overcome by building a second level of parallelization (DEM) with the
goal of improving load balance when the solids and their contacts are
concentrated only in some of the CFD subdomains. To achieve these
goals, a contact pool is created that contains all contacts occurring at
the given time. The contacts are distributed between the processors
independently of CFD domain decomposition. To limit processor–
processor communication, a new memory structure is created for DEM
in which all particle information is arranged in an 𝑛-dimensional array,
with 𝑛 being equal to the number of CPUs used. This way, each
CPU accesses a unique set of memory addresses, shifting processor
communication from individual particles to large data structures and
achieving well-scalable simulations on multiple CPUs, though at the
expense of somewhat increased memory requirements.

4. Verification and illustrative examples

To showcase the capabilities of the OpenHFDIB-DEM project, three
examples are presented. First, the precision and accuracy of the custom
DEM model are verified against the LIGGGHTS software [6]. Second,
a simulated pouring of thousands of non-spherical solids is presented
with an emphasis on the openHFDIB-DEM parallel computation effi-
ciency. The third test deals with fludization of thousands of differently
shaped solid particles, representing a typical large-scale CFD-DEM ap-
plication. All of the tests presented are included in the repository for
this article. The tests were evaluated using a computer with AMD®
EPYC™ 7551 64-core CPU and 1 TB RAM. Further verification and
examples of the software applications may be found in [14,22]. Finally,
an overview of our code capabilities compared to standard CFD-DEM
solutions is provided in Appendix B.

4.1. Comparison with LIGGGHTS for spherical particles

The DEM model presented here comprises an updated formulation
of contact treatment for arbitrarily shaped solids. In contrast to the
standard formulation of the Hertz contact model, the contact forces are
scaled by the magnitude of the overlap volume. Nevertheless, the model
is consistent with the Hertz model for spheres. LIGGGHTS [6] is a
widely spread open-source DEM solver for spherical particles, generally
applied as the standard for soft-DEM modeling of the granular matter.
Here, we use it as the reference for verification tests of our OpenHFDIB-
DEM solver. The presented comparison consists of three verification
tests presented in Fig. 3, with material properties and solver settings
summarized in Table 1. The solid walls possess the same material
properties as the particles.

The first verification test focuses on the treatment of normal contact
force. In the test, we evaluate the contact of two spheres. The bottom

Table 1
Material properties and simulation settings for verification against the LIGGGHTS solver

Test No. 𝑌 𝜀 𝜇 𝐶𝓁 𝜈 𝜌 𝑑char 𝛥𝑡
(GPa) (−) (−) (−) (−) (kgm−3) (cm) (μs)

1 0.1 1.0, 0.5, 0.06 0.0 0.55 0.0 2500 2.0 10
2 0.1 1.0 1.0 0.55 0.0 2500 8.0 1.0
3 0.5 0.6 0.1 0.55 0.4 2500 0.4 1.0

Table 2
Material properties and simulation settings for DEM pouring of polyhedral particles.

Test No. 𝑌 𝜀 𝜇 𝐶𝓁 𝜈 𝜌 𝑑char 𝛥𝑡
(GPa) (−) (−) (−) (−) (kgm−3) (mm) (μs)

4 0.50 0.25 1.0 4 0.5 4000 3.88 1
5 0.50 0.25 1.0 4 0.5 4000 3.99 1
6-left 0.50 0.5 0.5 4 0.5 4000 4.18 1
6-right 0.05 0.25 1.0 4 0.5 5000 7.94 0.5

connecting the spheres centers, Fig. 3a. The magnitude of the initial
velocity of the upper sphere is 𝑢0i = 1ms−1.

Fig. 3b shows a comparison between OpenHFDIB-DEM and
LIGGGHTS solution for the upper sphere trajectory and different values
of the coefficient of restitution. The results are practically identical. The
evolution of the normal contact force for the two solvers is compared
in Fig. 3c. Slight differences in the force evolution can be observed,
especially in the purely elastic case with 𝜀 = 1.0. These differences
are caused by a different evolution of the overlap volume compared
to the overlap distance. However, the moments of the acting force are
the same for both OpenHFDIB-DEM and LIGGGHTS, which results in
virtually the same particle trajectories for both solvers.

Test 2 simulates a gravity-induced rolling of a sphere down an
inclined plane, Fig. 3d. The distance traveled, sphere angular velocity,
and acting tangential force at different inclination angles are provided
in Fig. 3e,f,g, respectively. Again, the OpenHFDIB-DEM, LIGGGHTS,
and analytical solution are practically identical for the distance traveled
and angular velocity, Figs. 3e,f. The limit tangential forces also match
quite well, Fig. 3g. Furthermore, the initial force oscillation artifacts
are significantly reduced in the OpenHFDIB-DEM solution compared to
LIGGGHTS.

Test 3 investigates a pouring of 10,000 monodisperse spherical
particles into a hexahedral container, Fig. 3h. To analyze the system, we
study the evolution of the packed bed porosity 𝜀V, which is practically
the same for both OpenHFDIB-DEM and LIGGGHTS, including the
bounce-back of spheres indicated by points (†) and (□) in Fig. 3i.

Analysis of the computation costs revealed that LIGGGHTS is ap-
proximately 45 times faster than OpenHFDIB-DEM in a DEM simulation
of ideal spherical particles. This difference in the computational ef-
ficiency is caused by the intended application of OpenHFDIB-DEM
for CFD-DEM simulations. Even if only the DEM solver is used in
OpenHFDIB-DEM, the CFD computational mesh is still constructed and
all particles are projected onto it in each time step, which is a time-
consuming operation. The subsequent tests will demonstrate advanced
features of our solver that justify the increased computational costs.

4.2. Pure DEM for polyhedral particles pouring

The pouring of generally shaped particles into a hexahedral con-
tainer is simulated in Tests 4–6, Fig. 4. This study focuses on the
solver efficiency and scaling performance with respect to DEM; no
fluid is taken into account. The tests consider particles defined using
surface representation (STL files). All collisions are evaluated using the
virtual mesh algorithm [22], set on the refinement level 4. The material
properties and solver settings are summarized in Table 2; the material
of the system walls again corresponds to the particles.

We tested four types of particles: an icosahedron, a 320-sided
sphere-like polyhedron, a rock-like particle generated in Blender [23],
sphere is static, while the upper one moves towards it on the trajectory

5 



Ondřej Studeník et al. SoftwareX 27 (2024) 101871 
Fig. 3. Verification of OpenHFDIB-DEM against LIGGGHTS.

and a 𝛾-alumina particle taken from [24]. Initial state of the simulations
is given in Fig. 4a. Qualitative views of individual particles, together
with the number of particles considered (𝑛) and the slope of the
scaling trend line (𝑎) are displayed in Fig. 4b. The code scaling in
parallelization up to 32 cores is shown in Fig. 4c. In general, the DEM
part of the code scales at 60–70% of the ideal (linear) effectiveness. At
the moment, the parallelization bottleneck is data transfer between the
cores. Consequently, the code scales better for particles that occupy less
space in memory, e.g., for icosahedrons (Test 4 in Fig. 4). To achieve
good scaling, we recommend to have at least 30 particles per single core
while adhering to the OpenFOAM standard of 50,000 cells per core.

4.3. Fluidization with polyhedral particles

The CFD-DEM capabilities of OpenHFDIB-DEM are illustrated in
simulations of fluidization with the same icosahedrons and 𝛾-alumina
particles as used in Test 4 and Test 6-right in Fig. 4. The particles
properties correspond to Table 2 except that the particle density is set to
2500 kgm−3 and restitution coefficient is 0.75. The fluid is a Newtonian
liquid with kinematic viscosity 7 ⋅10−6 m2s−1 and density of 1000 kgm−3.

The fluidization column itself is a 250mm high hexahedron of a
square cross section with the side of 80mm. The CFD computational
domain is discretized in 120 × 120 × 375 cells. On the walls of the
column, standard no-slip boundary conditions are used. At the inlet,
a uniform inlet velocity 𝒖inlet = (0, 0, 0.085)T ms−1 and zero-gradient
for pressure are used. At the outlet, zero-gradient for velocity and
a prescribed pressure are applied. The integration step for the CFD
solver is adaptive, governed by the flow Courant number, and the DEM
integration step is set to 1∕100 of the current CFD time step.

The results of the fluidization tests are depicted in Fig. 5a, comple-
mented by the temporal evolution of the fluidized bed porosity (𝜀V)
in Fig. 5b. The zone of interest in which 𝜀V is evaluated is indicated
by a red box in Fig. 5a. The tests start from an initial, randomly
generated bed of a prescribed height in time 𝑡 = 0 s. After roughly
1.5 s of the simulation time, all the tested packed beds reach a stable
porosity corresponding to a pseudo-steady state fluidization, Fig. 5b.
As expected, the resulting porosity do not depend on the number of
particles (1000, 3000 or 5000 icosahedrons) but indeed it depends on
the particle size and shape (icosahedrons vs. alumina particles).

The scaling of computational time with parallelization on 1–32 cores
is shown in Fig. 5c. The complete CFD-DEM code scales similarly to
6 



Ondřej Studeník et al. SoftwareX 27 (2024) 101871 
Fig. 4. DEM simulations of pouring of polyhedral particles; 𝑛 denotes the number of particles, 𝑎 is the observed slope of scaling in parallelization.

the DEM part of the code, that is, with ≳ 60% effectiveness of the ideal
linear scaling. In the system with 1000 icosahedral particles, the DEM
is responsible for 44% of the computational costs. With an increasing
number of particles or particle complexity, the DEM costs increase.
Specifically, DEM is responsible for 82% and 89% of the computational
costs of fluidization with 3000 and 5000 icosahedrons, respectively;
and for 69% of the computational time for the alumina particles. A
conservative estimate is that the current code can be effectively used
to simulate cases with (104) non-spherical particles on a CFD mesh
with (101) cells per characteristic particle dimension.

5. Impact and conclusions

The OpenHFDIB-DEM project is an open-source extension of the
OpenFOAM framework, compatible with OpenFOAMv8 and soon to be
ported to OpenFOAM 2312. It is designed for particle-resolved CFD-
DEM simulations with arbitrarily shaped solids. Particular attention
was paid to the software architecture and to the DEM part of the
code, in which the contact model was reformulated to be consistent
with the standard Hertz model for spheres while keeping its generality
with respect to contact between arbitrarily shaped solids. For spheres,
OpenHFDIB-DEM provides results in agreement with the LIGGGHTS
software. For both DEM and CFD-DEM applications with thousands of
non-spherical solids, the computational time scales with the number
of cores at roughly 60% of the ideal linear scaling. Due to its open and
modular architecture, the OpenHFDIB-DEM library can be implemented

in different OpenFOAM-based solvers to ease simulation of various
processes involving flow laden with arbitrarily shaped particles.

CRediT authorship contribution statement

Ondřej Studeník: Writing – original draft, Visualization, Valida-
tion, Software, Investigation. Martin Isoz: Writing – review & editing,
Supervision, Software, Funding acquisition, Conceptualization. Martin
Kotouč Šourek: Validation, Software, Investigation, Formal analysis,
Conceptualization. Petr Kočí: Writing – review & editing, Supervision,
Project administration, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

All the data and codes are publicly available on github.

Acknowledgments

The work was financially supported by the Czech Science Founda-
tion project 22-12227S. Martin Isoz and Ondřej Studeník acknowledge
7 



Ondřej Studeník et al. SoftwareX 27 (2024) 101871 
Fig. 5. CFD-DEM simulations of fluidization with differently shaped polyhedral particles; 𝜀V denotes porosity of the bed, 𝑎 is the observed slope of scaling in parallelization.

the financial support provided by institutional support RVO:61388998,
by the grant project with No. TN02000069/001N of the Technol-
ogy Agency of the Czech Republic, Czechia, and by the Ministry of
Education, Youth, and Sports of the Czech Republic via the project
No. CZ.02.01.01/00/22_008/0004591 (Ferroic Multifunctionalities),
co-funded by the European Union. Martin Kotouč Šourek thanks John-
son Matthey Technology Centre in Sonning Common for the support
and feedback.

Appendix A. Detailed description of contact treatment

The contact model from our previous work [14] was updated con-
sidering the Cundall and Strack [17] model. The new formulation
is further extended by the dissipation term derived by Tsuji et al.
[19]. In the following, we provide a brief overview of the template
contact model for spherical particles and list the modifications made
to generalize it to arbitrary solids.

Base contact model for spherical particles. In the case of a collision
between two spherical particles (𝑖 and 𝑗), the contact model by Cundall
and Strack [17] with the dissipation term from [19] can be summarized
in the following relations for the contact normal force acting on the
particles (𝒇 c,n),

𝒇 c,n =
(

𝑘n𝛿 + 𝛾n
√

𝑘n𝑀 red d𝛿 )𝒏c , (A.1)

𝑘n = 4
3
𝑌 red

√

𝑟red𝛿 , 𝛾n =
−
√

5 ln (𝜀)
√

ln (𝜀)2 + 𝜋2
, (A.2)

where 𝑘n denotes the elastic material stiffness according to the reduced
material properties of Young’s modulus 𝑌 red, sphere radii 𝑟red and
given particle overlap 𝛿. By 𝛾n, we mark the damping factor evaluated
according to the restitution coefficient 𝜀 with 𝑀 red being the reduced
mass of the particles and 𝒏c the contact normal vector. The reduced
values are evaluated as a harmonic average of the individual particle
properties. Furthermore, in the case of Young modulus, the reduced
value is weighted by (1 − 𝜈2), where 𝜈 is the Poisson ratio of the
individual materials.

In the case of sphere–sphere collision, the overlap length (𝛿) is
evaluated as

𝛿 = max
[

0, (𝑟𝑖 + 𝑟𝑗 ) − (𝒙𝑖 − 𝒙𝑗 ) ⋅ 𝒏c
]

, 𝒏c =
𝒙𝑖 − 𝒙𝑗

‖𝒙𝑖 − 𝒙𝑗‖
. (A.3)

However, this principle cannot be directly applied to collisions of
arbitrarily shaped solids, where the overlap length does not always
reflect the particle shape and overall scope of the collision.

Formulation for non-spherical particles. During the years, numerous ap-
proaches have been proposed to treat the contact of non-spherical
particles; see the reviews by Feng [25] and Zhao et al. [26], or the
recent work of Zhao and Zhao [27]. In the present solver, we build the
contact treatment for arbitrarily shaped particles on the works of Chen
d𝑡

8 



Ondřej Studeník et al.

w
d
o
t
c
s
c

a
i

T
t

SoftwareX 27 (2024) 101871 
Table B.3
Overview of general capabilities of the most spread CFD-DEM codes compared to openHFDIB-DEM.
Software identifiers
CFD OpenFOAMv8 OpenFOAMv5 OpenFOAMv6 ANSYS Fluent OpenFOAMv8
DEM HFDIB-DEM LIGGGHTS YADE Rocky DEM Aspherix

Code information
open-source ✓ ✓ ✓ ✗ ✗

architecture monolithic modular modular modular modular

Treatable particles
spheres ✓ ✓ ✓ ✓ ✓

clumps ✗ ✗ ✗ ✓ ✓

superquadrics ✗ ✗ ✗ ✓ ✓

convex polyhedra ✓ ✗ ✗ ✓ ✓

general polyhedra ✓ ✗ ✗ ✓ ✓

Coupling scheme
point force ✗ ✗ ✓ ✓ ✗

volume averaged ✗ ✓ ✓ ✓ ✓

particle-resolved ✓ ✗ ✗ ✗ ✓

[28] and Matuttis and Chen [16], where the concept of overlap volume
(𝑉 o) as a generalization to the overlap length 𝛿 was introduced and
studied in detail for polyhedral particles. The formulation of the contact
normal force from [16,28] is

𝒇 c,n =

(

𝑌 red 𝑉 o

𝓁c + 𝛾∗
√

𝑌 red 𝑀 red

(𝓁c)3
d𝑉 o

d 𝑡

)

𝒏c , 𝓁c = 4
‖𝓵𝑗‖ ‖𝓵𝑖‖

‖𝓵𝑗‖ + ‖𝓵𝑖‖
,

(A.4)

here 𝓁c stands for characteristic contact length with ‖𝓵‖ as the
istance between the solids center of mass to the center of mass of the
verlap volume 𝑉 o, and 𝛾∗ is an empirical dissipation coefficient. To
reat the term of the overlap volume derivative, we assume that the
ontact cross-sectional area 𝐴c is constant during a single DEM time
tep (𝐴c ⇝ 𝐴̄c) and the time derivative of the overlap volume in (A.4)
an be approximated as

d𝑉 o

d 𝑡
= 𝐴̄c

(

d𝓵o

d 𝑡
⋅ 𝒏c

)

= 𝐴̄c
(

𝒖r ⋅ 𝒏c
)

, 𝒖r = 𝒖𝑖 − 𝒖𝑗 + (𝝎𝑖 ×𝓵𝑖 −𝝎𝑗 ×𝓵𝑗 )

(A.5)

where 𝓵o is the position of the 𝑉 o center of mass and 𝒖r stands
for the relative velocity of the contact pair. This contact model was
implemented as a part of our previous work [14].

To replace the empirical dissipation coefficient 𝛾∗ and utilize the
widely applied coefficient of restitution (𝜀), we reformulated the con-
tact model in the current version of our OpenHFDIB-DEM solver. Based
on a comparison of elastic terms in Eqs. (A.1) and (A.4), the new
formulation is

𝒇 c,n =
(

𝑘n∗𝛿
o + 𝛾n

√

𝑘n∗𝑀 red 𝒖r ⋅ 𝒏c
)

𝒏c , (A.6)

𝑘n∗ = 𝑌 red 𝐴̄c

𝓁c , 𝓁c = 𝐶𝓁

‖𝓵𝑗‖ ‖𝓵𝑖‖

‖𝓵𝑗‖ + ‖𝓵𝑖‖
, (A.7)

where 𝑘n∗ is the effective elastic material stiffness for the volume-
defined contact, 𝛿o = 𝑉 o∕𝐴̄c is derived from the overlap volume and
contact cross section area, and 𝐶𝓁 is the effective curvature of the given
particle shape. Note that from the comparison of 𝑘n and 𝑘n∗, cf. (A.2)
and (A.7), it follows that

𝑘n ∼ 𝑘n∗ ⇝ 𝑘n = 4
3
𝑌 red

√

𝑟red𝛿 ∼ 𝑌 red 𝐴̄c

𝓁c = 𝑘n∗ ⇝
√

𝑟red𝛿 ∼ 𝐴̄c

𝓁c . (A.8)

The evaluation of contact-defining parameters such as the overlap
volume 𝑉 o, cross-section area 𝐴̄c, or the contact center is resolved using

custom algorithm called virtual mesh, which is described in detail
n [22].

reatment of tangential forces. To comply with the particles rotation,
he tangential forces acting on the particles 𝑖 and 𝑗 in contact are

incrementally as proposed by Mindlin and Deresiewicz [29]. The com-
pensation for particles rotation is performed by projecting the acting
tangential force (𝒇 c,t) from the previous time step (𝒇 c,t

old) in the direction
tangential to the current contact as:

project into new direction 𝒇 c,t
old,∗ = 𝒇 c,t

old −
(

𝒏c ⋅ 𝒇 c,t
old

)

𝒏c, (A.9)

rescale to original magnitude 𝒇 c,t
old,cor =

‖𝒇 c,t
old‖

‖𝒇 c,t
old,∗‖

𝒇 c,t
old,∗ . (A.10)

The increment in tangential force is, in agreement with [29] but
leveraging the modifications similar as proposed for the treatment of
the contact normal force, defined as

𝛥𝒇 c,t = 𝑘t∗ 𝛥𝝃
t − 2𝛾n

√

𝑘t∗𝑀 red 𝒖tr , 𝑘t∗ = 8𝐺red 𝐴c

𝓁c
,

𝛥𝝃t = 𝒖tr 𝛥𝑡, 𝒖tr = 𝒖r −
(

𝒖r ⋅ 𝒏c
)

𝒏c ,
(A.11)

where 𝑘t∗ is the tangential elastic material stiffness, for the evaluation
of which a similar argument as in (A.8) was applied to replace

√

𝑟red𝛿
by 𝐴̄c∕𝓁c. The reduced shear modulus 𝐺red is computed as a harmonic
average of the properties of the individual particles weighted by (2−𝜈2).
The increment of the elastic tangential force is scaled according to the
change of the tangential overlap 𝛥𝝃t while the incremental dumping is
proportional to the particles relative tangential velocity 𝒖tr . Finally, the
new tangential contact force 𝒇 c,t

new is computed in the following manner,

𝒇 c,t
new = 𝒇 c,t

old + 𝛥𝒇 c,t . (A.12)

Implementation of friction and contact force application. To conclude
the treatment of the collision forces, the new tangential force 𝒇 c,t

new is
corrected to comply with the Coulomb friction with the coefficient of
sliding friction 𝜇f r as

If ‖𝒇 c,t
new‖ > 𝜇f r

‖𝒇 c,n
‖ then 𝒇 c,t

new = 𝜇f r ‖𝒇
c,n
‖

‖𝒇 c,t
new‖

𝒇 c,t
new . (A.13)

The normal and tangential forces are summed up to evaluate the
final contact force 𝒇 𝑐 = 𝒇 c,n + 𝒇 c,t , which is applied to the right hand
sides of Eq. (3) affecting the colliding particles 𝑖 and 𝑗 :

𝒇 𝑐
𝑖 = 𝒇 c, , 𝒕𝑐𝑖 = 𝓵𝑖 × 𝒇 𝑐

𝒇 𝑐
𝑗 = −𝒇 c, , 𝒕𝑐𝑗 = 𝓵𝑗 × (−𝒇 𝑐 ) . (A.14)

Appendix B. Available CFD-DEM codes capabilities

In Table B.3, we list general capabilities of the most used CFD-DEM
codes allowing for fully coupled simulations of particle-laden flows.
The codes capabilities are compared with the openHFDIB-DEM solver
presented. Note that modular architecture stands for two independent
codes linked via input/output interfaces, while monolithic architecture
represents a single code where internal variables from CFD are avail-
able to DEM and vice versa. The listed features of ANSYS Fluent and
Aspherix are based on their web presentations as no documentation is
freely available.
(i) compensated for the rotation of the particles, and (ii) evaluated

9 



Ondřej Studeník et al. SoftwareX 27 (2024) 101871 
References

[1] Börner M, Bück A, Tsotsas E. DEM-CFD investigation of particle residence
time distribution in top-spray fluidised bed granulation. Chem Eng Sci
2017;161:187–97.

[2] Genovese D, Lozano J, Rao M. The rheology of colloidal and noncolloidal food
dispersions. J Food Sci 2007;72(2):R11–20.

[3] Hilton J, Mason L, Cleary P. Dynamics of gas-solid fluidised beds with
non-spherical particle geometry. Chem Eng Sci 2010;65(5):1584–96.

[4] Blažek M, Žalud M, Kočí P, York A, Schlepütz C, Stampanoni M, et al. Wash-
coating of catalytic particulate filters studied by time-resolved X–ray tomography.
Chem Eng J 2021;409:128057–1–128057–14.

[5] Kloss C, Goniva C, Hager A, Amberger S, Pirker S. Models, algorithms
and validation for opensource DEM and CFD-DEM. Prog Comput Fluid Dyn
2012;12:140–52.

[6] Kloss C, Goniva C. LIGGHTS – open source discrete element simulations of
granular materials based on LAMMPS. In: Supplemental proceedings: Materials
fabrication, properties, characterization and modeling, vol. 2. The Minerals,
Metals & Materials Society (TMS); 2011, p. 781–8. http://dx.doi.org/10.1002/
9781118062142.ch94.

[7] Šmilauer V, Angelidakis V, Catalano E, Caulk R, Chareyre B, Chèvremont W,
et al. Yade documentation. 3rd ed. Zenodo; 2021, http://dx.doi.org/10.5281/
ZENODO.5705394.

[8] Ansys-Fluent. Ansys Fluent 12.0 theory guid. Canonsburg: ANSYS, Inc, SAS IP,
Inc.; 2015, URL: https://www.afs.enea.it/project/neptunius/docs/fluent/html/
th/main_pre.htm.

[9] Ansys-Rocky. Rocky user manual, 4.0. Canonsburg: ANSYS, Inc, SAS IP, Inc.;
2024, URL: http://www.rocky-dem.com.

[10] DCS Computing GmbH. Aspherix website (n.d.). 2024, URL: https://www.
aspherix-dem.com/.

[11] OpenCFD. OpenFOAM: The open source CFD toolbox. User guide version 1.4.
Reading UK: OpenCFD Limited; 2007.

[12] Municchi F, Radl S. Consistent closures for Euler-Lagrange models of bi-
disperse gas-particle suspensions derived from particle-resolved direct numerical
simulations. Int J Heat Mass Transfer 2017;111:171–90.

[13] Municchi F, Radl S. Momentum, heat and mass transfer simulations of
bounded dense mono-dispersed gas-particle systems. Int J Heat Mass Transfer
2018;120:1146–61.

[14] Isoz M, Kotouč Šourek M, Studeník O, Kočí P. Hybrid fictitious domain-immersed
boundary solver coupled with discrete element method for simulations of flows
laden with arbitrarily-shaped particles. Comput & Fluids 2022;244:105538.

[15] Rodrigues O. Des lois géométriques qui régissent les déplacements d’un système
solide dans l’espace, et de la variation des coordonnées provenant de ces
déplacements considérés indépendants des causes qui peuvent les produire. J
Math Pures Appl (9) 1840;5.

[16] Matuttis H, Chen J. Understanding the discrete element method: Simulation of
non-spherical particles for granular and multi-body systems. Wiley; 2014.

[17] Cundall PA, Strack ODL. A discrete numerical model for granular assemblies.
Géotechnique 1979;29(1):47–65.

[18] Hertz H. Ueber die Berührung fester elastischer K orper. J Reine Angew Math
1882;1882(92):156–71.

[19] Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of
cohesionless particles in a horizontal pipe. Powder Technol 1992;71(3):239–50.

[20] ISO. ISO\IEC 14882:2020: Programming languages— C++. 6th ed. pub-ISO;
2020, p. 1853, URL:.

[21] Bruck J, Dolev D, Ho C, Roşu M, Strong R. Efficient message passing interface
(MPI) for parallel computing on clusters of workstations. J Parallel Distrib
Comput 1997;40(1):19–34.

[22] Kotouč Šourek M, Studeník O, Isoz M, Kočí P, York AP. Viscosity prediction
for dense suspensions of non-spherical particles based on CFD-DEM simulations.
Powder Technol 2024;444:120067.

[23] Community BO. Blender - A 3D modelling and rendering package. Stichting
Blender Foundation, Amsterdam: Blender Foundation; 2018, URL: http://www.
blender.org.

[24] Ditscherlein R, Furat O, Löwer E, Mehnert R, Trunk R, Leißner T, et al. PARROT:
A pilot study on the open access provision of particle-discrete tomographic
datasets. Microsc Microanal 2022;28(2):350–60.

[25] Feng Y. Thirty years of developments in contact modelling of non-spherical
particles in DEM: a selective review. Acta Mech Sinica 2023;39:722343.

[26] Zhao J, Zhao S, Luding S. The role of particle shape in computational modelling
of granular matter. Nat Rev Phys 2023;5:505–25.

[27] Zhao S, Zhao J. Revolutionizing granular matter simulations by high-performance
ray tracing discrete element method for arbitrarily-shaped particles. Comput
Methods Appl Mech Engrg 2023;416:116370.

[28] Chen J. Discrete element method for 3D simulations of mechanical systems
of non-spherical granular materials [Ph.D. thesis], Chōfu,Tokyo, Japan: The
University of Electro-Communications; 2012.

[29] Mindlin RD, Deresiewicz H. Elastic spheres in contact under varying oblique
forces. J Appl Mech 1953;20(3):327–44.
10 

http://refhub.elsevier.com/S2352-7110(24)00241-3/sb1
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb1
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb1
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb1
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb1
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb2
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb2
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb2
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb3
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb3
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb3
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb4
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb4
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb4
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb4
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb4
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb5
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb5
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb5
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb5
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb5
http://dx.doi.org/10.1002/9781118062142.ch94
http://dx.doi.org/10.1002/9781118062142.ch94
http://dx.doi.org/10.1002/9781118062142.ch94
http://dx.doi.org/10.5281/ZENODO.5705394
http://dx.doi.org/10.5281/ZENODO.5705394
http://dx.doi.org/10.5281/ZENODO.5705394
https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/main_pre.htm
https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/main_pre.htm
https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/main_pre.htm
http://www.rocky-dem.com
https://www.aspherix-dem.com/
https://www.aspherix-dem.com/
https://www.aspherix-dem.com/
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb11
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb11
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb11
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb12
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb12
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb12
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb12
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb12
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb13
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb13
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb13
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb13
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb13
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb14
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb14
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb14
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb14
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb14
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb15
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb15
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb15
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb15
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb15
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb15
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb15
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb16
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb16
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb16
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb17
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb17
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb17
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb18
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb18
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb18
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb19
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb19
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb19
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb21
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb21
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb21
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb21
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb21
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb22
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb22
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb22
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb22
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb22
http://www.blender.org
http://www.blender.org
http://www.blender.org
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb24
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb24
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb24
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb24
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb24
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb25
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb25
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb25
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb26
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb26
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb26
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb27
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb27
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb27
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb27
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb27
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb28
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb28
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb28
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb28
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb28
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb29
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb29
http://refhub.elsevier.com/S2352-7110(24)00241-3/sb29

	OpenHFDIB-DEM: An extension to OpenFOAM for CFD-DEM simulations with arbitrary particle shapes
	Motivation and significance
	Model description
	Computational fluid dynamics
	Discrete element method
	Contact treatment

	Software description
	Verification and illustrative examples
	Comparison with LIGGGHTS for spherical particles
	Pure DEM for polyhedral particles pouring
	Fluidization with polyhedral particles

	Impact and conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Detailed description of contact treatment
	Appendix B. Available CFD-DEM codes capabilities
	References


