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The inviscid impingement of a jet with arbitrary velocity profile

Denis J. Phares® and Gregory T. Smedley
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Richard C. Flagan
Chemical Engineering, California Institute of Technology, Pasadena, California 91125

(Received 24 February 1999; accepted 3 May 2000

Accurate determination of wall shear stress and heat and mass transfer rates under an impinging jet
requires careful analysis of the boundary layer at the impingement surface due to the large pressure
gradients near the stagnation point. Modeling the inviscid flow just outside the boundary layer
provides the boundary conditions necessary for such an analysis. Previous inviscid models have
considered only a small subset of possible jet velocity profiles and with limited spatial resolution.
In the present work, analytical solutions to the stream-vorticity equation for two-dimensional and
axisymmetric impingement flow with arbitrary velocity profile are found in terms of a surface
integral involving the vorticity function, allowing an iterative determination of the stream function
throughout the impingement region. Surface pressure distributions and streamline plots are
calculated for various impinging jet configurations, including plane, round, and annular jet nozzles.
The calculations show excellent agreement with previous experimental and numerical results, while
requiring relatively short computation times. Flow predictions are also made for impinging jet
configurations for which no previous data or calculations exist. 2@0 American Institute of
Physics[S1070-663000)01708-9

I. INTRODUCTION Walsh?), only a small number of investigatdrs'’ have de-

Impinging iets have most commonly been exploited forveloped inviscid flow models, thereby enabling separate
the enr;ar?ce% Jheat nd mass transfer%hat occurr')s at the jleatment of the boundary layer. Strahdbtained the flow

) i . Teld for potential jet impingement analytically. This solution
pingement surfacg, however, the shea_r induced along the SUS relevant to the impingement of a jet very close to the
face prowdes the 'mpet.lrf for ;evergl |mp()3rt_ant t?Chnomg'egurface so that impingement occurs before the jet fluid has
!ncludmg surface cleani . ga_ndjet s_tnppnjgz in which 935 ixed with the quiescent fluid. The inviscid impingement of
jets are used to control liquid coating thickness. The |nduce(];iuIIy developed laminar pipe flow was considered by Scholtz
shear can also be utilized for characterization of adhesive

strength in powder coatinysr trace particulate residuor and Trass? who derived an analytical solution assuming a

subsequent surface sampling and chemical analysis. THJearabollc influx velocity profile. Again, this solution is valid

ability to map the shear stress distribution for various im-gnly fqr srfnalltplpe to ptlr?tz si)acmg:s. P?hranlesm?aeed.a |
pinging jet configurations is essential for quantification of reen’s function method 1o sove the two-cimensiona

adhesion strengths and for optimization of surface samplin tregr?-vt()) rflmtty (Iaquatllotn éorﬂ'g[f? |dnger|nent dOf a ﬂglyl d;eyetl-
or cleaning efficiency. Accurate shear stress measuremen ed turbuient piane Jet. iku ceveloped a modet of je

under submerged impinging jets using the electrochemicjgpingemem that included turbulent mixing of the jet with

method have produced excellent agreement with a lamin e surrounding quiescent fluid by using both the fully de-

boundary layer analysis close to the stagnation gbfiThe yeloped and developing free jet velocity profiles for the flow

removal of monosized microspheres from a surface durin to the-impingement region. Ru.b.el cast thg two-dimenfsipnal
exposure to an impinging gas jet has been shown to scagjd axisymmetric stream-vorhcny equgﬂons mt_o finite-
with the induced wall shear strésand has also exhibited ifference form and solved using relaxation techniques. Al-
similar agreement with laminar boundary layer thethyhe thou_gh Rubel considgred a \.Nid.er variety Of influx velocity
boundary conditions needed to determine the wall sheaﬁ’mf'les than the previous inviscid models, divergence of the

stress as well as heat and mass transfer to the surface afgrative procedure limited the profiles to ones that included
obtained from the inviscid flow just outside the boundarySmall velocity defects, while computing time limited the spa-
layer. tial resolution of the final solution.

Although the field of jet impingement is extremely rich An !nfinite number of jet velocit'y profiles are possible '
in the literature(see, for example, Martth or Looney and depending on the nozzle shape, height above the surface, jet
Reynolds number, and Mach number. Since only a limited

subset of jet velocity profiles were considered in the previous
dAuthor to whom correspondence should be addressed. Present addre

Mechanical Engineering Department, University of Delaware, Newark, DEﬁﬁveStlgatlons’ efforts to explore the effect of varying the

19716. Telephona302) 831-6622; Fax(302 831-3619. Electronic mail.  VelOCity profile on technologies such as surface cleaning or
phares@me.udel.edu sampling may be difficult. To facilitate such a study, we
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y perpendicular to the surfacg,horizontally outward for the
two-dimensional case, amdadially outward for the axisym-
metric case. The velocity components areparallel to the

b
/ surface, and), perpendicular to the surface. The governing
I equations are
Py 5
! TV oy &y
ay?  oax?
and
e Py Py 1o
. TV 2 2ory), 2

ay?  ogr? roor
m e ’
for two-dimensional and axisymmetric impingement, respec-

tively. In Eq. (1), the stream and vorticity functions are de-

X,r :
. " > fined
Y Y
FIG. 1 Approximate view of the flow region for determining vorticity sur- 5 =-v, W =u,
face integral.
Jdu  Jdv

present a method to calculate the flowfield produced by the ay ox’
inviscid impingement of a two-dimensional or axisymmetric 5 in Eq.(2)
jet with an arbitrary velocity profile.

In the present work, Rubel’s formulation of the problem A a
for two-dimensional and axisymmetric inviscid jet impinge- ~ ar ' °' gy 'O
ment is used as a starting point. A converging infinite series
solution to the governing equations is derived for an arbitrary () — 1(‘9_u _ ‘9_“) ]
influx stream function in terms of a surface integral of the ridgy or

vorticity function over the whole region of interest. ASSump-  The stream function is defined to be zero along the jet
tions concerning the vorticity throughout the flow allow an centerline and the surface. The influx stream functiefx)
approximate determination of this integral and, thus, a vengan pe determined from the given influx velocity profile at
reasonable guess of the full flowfield. By interpolating a newgome distancey, above the surface. The outflux streamlines
vorticity function distribution from the obtained stream func- 56 assumed to become parallel at some sufficiently large

tion, the surface integral can be recalculated and a correctefistance a. from the jet centerline. These boundary condi-
solution obtained. Iteration of this process coupled with Unsions are written

derrelaxation techniques yields quickly converging solutions.

The final solutions are compared with Rubel’'s numerical so- $(x,00=0, )
lutions and experimental measurements of the surface pres- W(0y)=0, (4)
sure distributions created by fully developed and developing

jet impingement. The present method of calculation requires  di

significantly less computation time than Rubel’s iterative O,)—X(a,y)=0, (5)
method with modest computing pow& 233 MHz Macin-

tosh Powerbook G3 was employed for all of the presented p(x,b)=F(x), (6)
calculations, while yielding stream function distributions \herex is simply replaced by the radial coordinatefor the
with high spatial resolution. axisymmetric case.

Since the present method can handle influx velocity pro-
files with arbitrarily large velocity defects, the impingement
of an annular jet profile, which resembles a fully developed“" ANALYTICAL SOLUTIONS
round jet profile with a severe core velocity deficiency, isA. Two-dimensional solution

considered in Sec. V. The flowfield produced by the im- . : .
pingement of an annular jet is relevant to the interaction of To solve Eq.(1) analytically, given the inhomogeneous

. : mixed boundary conditions, Eqé3)—(6), the general solu-
VISTOL aircraft exhaust with the grourid. tion was assumed to be the sum of the solutigp, to the

Laplace equation subject to the given boundary conditions
and the solutiony, , to the given Poisson equation subject to

In accordance with Rubel’s formulation all lengths andhomogeneous boundary conditions. The solution to the
velocities are nondimensionalized with the influx velocity former is found by separation of variables and application of
halfwidth and the maximum influx velocity, respectively. the first three boundary conditions, Eq8)—(5), yielding
The coordinate system is shown in Fig. 1 wythipward and  only one nontrivial solution,

Il. FORMULATION
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Pu(X,y)= n; A, sin(ypx)sinh( y,y), (7

where y,=[(2n—1)/2a] =. The constantsA, are deter-
mined by applying the last boundary condition, Eg),

2, AnSin(ypX)sinh( yyb) = F (x). (8)

Multiplying both sides of Eq(8) by sin(y,x)dx and integrat-
ing from 0O toa yields

2 a 1 ! !
An:mjo F(x )sm(ynx )dX . (9)

The solution to the Poisson equation subject to homog
enous mixed boundary conditions is found by expandin
both the stream and vorticity functions in the following Fou-

rier series:
w.<x,y>=mZ:1 nzl Crnn SIN(@my)Sin(y,X), (10)
mx,y):mE:1 n; Bnn SIN( @my) SN yX), (12)

wherea,,=max/b. The Fourier coeficient8,,, in Eqg.(11)

are written as a surface integral involving the vorticity func-

tion

4 a b H H ! ! i
Bm”:%f f QX' y")sin(amy’)sin(yx")dy’dx.
0Jo

(12)
Using Egs.(1), (10), and(11), we can solve foC,,
-B
Con=>—5 - (13
Yot oy

The general solution to Eq1) is the sum ofiy and ¢,

oo

Pxy)= >,

n=1

Apsinf(y,y)

oo

mn .
- — 5 sin(any)
m=1 y,+ap,

SIN(ynX). (14

Phares, Smedley, and Flagan

B. Axisymmetric solution

The procedure to calculate the general solution of the
axisymmetric case is identical to that presented in Sec. IIl A
for the two-dimensional case. The resulting homogeneous
stream function is

I(r,y)= 2, Dorda(Aar)siningy), (15)
where\, are defined such that(\,a)=0. Again, the co-
efficients,D,, are determined from the fourth boundary con-
dition, Eq. (6),

2 a
fF(r’)Jl()\nr’)dr’. (16)

D =
" a233(\pa)sinh(,b) Jo

The inhomogeneous solutiogy, , is determined by expand-

dng the stream function and the right-hand side of E).

into the following series:

© [

w.(r,y):mE:1 gl FodJ1(\ar)sin(amy), (17)
r29<r.y>=mE:l nzl EmarJ1(\ar)Sin(amy), (18)

where, once again, a surface integral involving the vorticity
function is embedded in the series coefficiefis,,,

-
Enwv=—"—"—" r<Q(r',y")J (N’
mn baz‘]i()\na) 0Jo ( y ) 1( n )

Xsin(a,y’)dy’dr’. (19
Using Egs.(2), (17), and(18),
_Emn
Fon=———5. 20
= 22 (20

The general solution to Eq2) subject to the boundary
conditions, Egs(3)—(6), is
P(r,y)
o0 oo E
> | Dpsintny) = 2 —ssin(agy) [rdg(Nar).
= 0 a2 +\2

n=0 m= m n

(21)

IV. METHOD OF CALCULATION
A. Initial guess

To apply Egs.(14) and (21) to the physical problem of

This result is the stream function distribution assuming arimpingement flow, the surface integrals in E(&2) and(19)
influx stream function profile and parallel outflux flow far must be evaluated. Therefore, some information about how
from the origin. Note that the simple inviscid corner flow the vorticity function behaves within the region of interest is
solution, ¢y~ Xy, is recovered ag andy become very small. required. Due to the inviscid approximation, the vorticity is
Applying Eqg. (14) to impinging jets requires knowledge constant along streamlines; §b= (). This alone is not
of the vorticity function throughout the whole region so that sufficient to solve the surface integral; however, if we also
the coefficientsB,,,, can be determined from E¢l2). An  assume that the influx velocity halfwidth is small compared
initial guess of the vorticity function is detailed in Sec. IV A to the integration limitsa and b, then we can approximate
allowing calculation of the coefficient8,,,, leading to a the stream functionfand thus the vorticity functionover
corrected solution. most of the region with a far-field expression.
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The small near-field region close to the intersection ofwhere the functiors is determined by matching the vorticity
the jet centerline and the surface must be treated separatefunction atx= 6 andy= e with the far-field solutiongsee
Hence an initial guess is formulated by splitting the surfacerig. 1). Since{)(x,8)=F"(x) andQ(e,y)=F"(y), then
integrals into the three regions portrayed in Fig. 1: the inflow _ _
region, |, and the outflow region]l , which require far-field GCxo)=x, Gley)=y,
solutions, and the impingement regidh, which requires a and thus
near-field solution. Xy

Q4 (X, :F”(—), 26
1. Far-field solutions (%) € (20

The approximation for regioh stems from the observa- for 6=e. _ _
tion that the influx near the centerline does not sense the For the axisymmetric Cﬁ}Sﬁfszy for smallr andy; and
presence of the surface until it is very close to the surtdce. matching the vorticity function af and e yields
The vorticity function is, therefore, determined by the influx

condition and can be expressed in terms of the influx stream ) (r y)= F'9) _F ' (27)
function, F(x), as £ Is
) =F"(), (22 for 6=2¢, wherel=r \/%

Ql(r):F—(r)—F—(sr),

= (29)

r

. . . . 3. The total integral
for the two-dimensional and axisymmetric cases, respec-

tively. Since we have estimated the value of the vorticity func-
Similar to the reasoning for regidn we assume that the tion in the three regions, the surface integral in E4&) and

vorticity close to the surface in regiolil approaches the (19) can be split into three integrals of known functions. For

outflux condition very soon after redirection. This condition the two-dimensional case, we have

is a little harder to implement directly since the outflux a b

boundary condition only assumes parallel streamlines. f j Q(x",y")sin(any’)sin(y,x")dy dx’

Therefore, we refer to Rubel's methi§dfor converting the 0Jo

mixed boundary conditions to Dirichlet boundary conditions. =1+ 1,413, (28)

For the two-dimensional case, Rubel showed that Eds.

and (5) imply that the influx stream function profile is iden- Where

tical to the outflux stream function profile. Thug(a,y) afb L L

=F(y) and the vorticity function in regiolil is taken to be l1= fo L F'(x")sin(amy’)sin(y,x")dy’dx’, (29
Qu (y)=F"(y), (24 cle (XY

for the two-dimensional case. lo= fo fo F”(T)sin(amy’)sin(ynx’)dy’dx’, (30)

Similarly, Rubel showed that Eq&) and(5) imply that
the influx and outflux stream function are parametrically re- afb L , o
lated such thaty(a,y) = F(y2ay). Since the outflux stream l3= L jo F"(y")sin(apy’)sin(y,x’)dy’'dx". (3D
function profile depends on the radial location of the bound- ) _ _
ary, a, it seems reasonable that, as the outflux condition id hese integrals can be computed numerically for an arbitrary
approached for large radial distances, the far-field strearififlux stream functionF(x). Fortunately, onlyl, requires a
function could be written agj(r,y):F(m), which ap- two—dlm_ensmnal integration, sm_dq can be integrated di-
proaches the parallel outflux condition far from the origin. "ectly with respect tg; andls, with respect toc. Note that

Therefore, we have for the axisymmetric case thel, andl; integrals overlap where,y> ¢, but at least one
of the vorticity functions is essentially zero in this region.
F"'(¢&) F'(§) The computation of the surface integral in the axisym-
Qu (ry)= 2 8 (25 metric case is more time consuming than the two-
dimensional case, since the correspondiggintegral re-
whereé=2ry. quires integration over bothandy
a (b,
2. Near-field solutions fo jor 20(r",y")31(8nr )sin( ey )dy’ dr’
The vorticity function in regionll is determined from
the stream function behavior close to the origin. As men- =lit+latls, (32)

tioned in Sec. lll,y~xy for small x andy in the two- a b
dimensional case. Since vorticity is constant along stream- |1=J J' (,:n(rr)_
0Je

lines, then() is a function ofxy, r’

F’(r’))

Q(xy)=Q[G(xy)], XJi(Apr')sin(amy’)dy'dr’, (33
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( y,)
- E'l r’ -
S (e Yy €
] oY
0JO € y’
r'\/—
€

XJp(Npr)sin(amy”)dy'dr’, (34)
LT pp— T
|3:f f F”( 2rlyl)_f
sJo var'y
XJi (N r')sin(amy’)dy'dr’. (395
For all cases considered in the present study, the terms v
of the summations in Eq$14) and(21) were calculated until FIG. 2. Effect of relaxation on solution convergence.

they fell below 0.01% of the maximum stream function
value. This required calculation of roughly 15 terms of the
outer summation, and a maximum of 50 terms of the innePlane {=0) and the outflux stream function profile deviated
summation. The number of terms calculated in the inneffom Rubel’s Dirichlet conditions by less than 1%.
summation decreased with each subsequent term of the outer

summation (i.e., only one term of the inner summation V. RESULTS AND DISCUSSION

needed to be calculated for the last term calculated for the

) The discussion that follows compares published surface
outer summation

pressure data with the present calculations. The surface pres-

B. Iteration and convergence

1y
ray

P(r)=1—<

sure is determined from Bernoulli’'s equation, i.e.,

. . . o A 2

The far-field/near-field stream function approximations p(x)zl_(_ )

detailed in the previous sections combined with E{sl) ay y=0

and (21), for the two-dimensional and the axisymmetric 5,4

cases, respectively, provide an initial guess of the flow field. )

The obtained stream function distribution can be converted

to a vorticity function distribution using the known correla- yO) '

tion between the vorticity and stream function at the influx . . ) .

boundary, allowing the vorticity integral to be reevaluatedf©' the two-dimensional and axisymmetric cases, respec-

and a new corrected solution obtained. Repeated correctidely:

of the stream function distribution by this method yields a ) _ )

converging solution under certain conditions. For example, if*: 1 Wo-dimensional jet

was found that the iteration must be performed with strongl. Fully developed jet impingement

underrelaxation, i.e., Surface pressure measurements for the impingement of

YrI=(1—0) "+ 6y, fully developed two-dimensional jets were made by Schauer

and Eusit¢® Kumada and Mabuclt and Beltaos and
ajaratnarf? for a variety of jet heightsH, and jet Reynolds

numbers. A comparison between their experimental data and

where#=<0.3, v is the iteration number, ang* is the inter-
mediate stream function obtained from direct correction o
¢”. Figure 2 shows the effect of the relaxation parameier,
on the residualR, of the iteration for the two-dimensional
case, where

R= | ¢V+1_ ¢V|max-

Figure 3 demonstrates that the initial guess presented in
Sec. IV A is important, since convergence is achieved only
for certain matching locationg, A value ofe=1.1 produces
a reasonable initial guess for two-dimensional impingement
that converges rapidly to the final solution. A similar analy-
sis of axisymmetric impingement suggests tkat0.5 is a
suitable matching location. Other than affecting the conver-
gence ratee has no effect on the final solution.

In the present study, iteration by this method was con-
tinued untilR<10 3. At this prescribed tolerance, another
order of magnitude reduction in the residual produced a less
than 10 2 maximum variation in the velocity at the ground FIG. 3. Effect of initial guess on solution convergence.
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FIG. 4. Comparison of predicted surface pressure distribution with experi-
mental and numerical results for an impinging two-dimensional jet.

the calculated surface pressure distribution, normalized witl|g, 5. Two-dimensional impinging jet streamlines as calculated using
the maximum stagnation pressuf&,,, is shown in Fig. 4. Rubel method and the present method.

The experimental data collapse to a single curve when dis-

tances are scaled witH. In order to convert to the present ) S . .

convention, it was necessary to determine the velocity halffunction distribution in Rubel’s calculations, is met exactly

width, b, at the prescribed influx location. For a free jet, in the present calculations. This is evident in Fig. 5, espe-
Beltaos and Rajaratn&ffound cially for the higher valued streamlines.

b *
ﬁu = 0.14 yﬁ + 0.15) , 2. Developing jet impingement

When a turbulent jet is located less than about 6 jet

wherey” is the dimensional distance from the jet nozzle.yigths above the surfaceH{D <6), then the jet potential
Furthermore, it was found that the influx location—taken to.qre will impinge upon the surface. Since the jet velocity

be the surface of departure of the jet from free jet behaviopofile is no longer self-similar due to the uniform velocity
—is consistently located at (7from the nozzle. Therefore, f the potential core, it would not be surprising if the form of
conversion simply involved dividing distances by the factoryhe syrface pressure profile deviated from similarity. In con-
by/H =0.085, and the collapse remains. . trast, Tu and Woddobserved pressure profile similarity for

~ The solid line in Fig. 4 represents the predicted pressurgnconfined jet heights as low &/D = 1, when lengths were
distribution. The values of the integration limita,andb,  scajed withD. Converting the data to the present convention
were chosen such that any increase in the these values had igolved scaling distances with, which slightly increases
effect on the solution. As observed by Rubel, the valaes yitn downstream distandg. Thus, unlike the fully devel-

=5 andb=5 placed the boundaries sufficiently far from the o6 case, similarity breaks down in the present convention
origin. Choosing the boundaries in this manner suggests ung, developing jet impingement.

confined jet impingement—the absence of a top surface that ¢ experiments of Tu and Wobdhclude conditions

would constrict the flow and thus affect the surface pressurghat allow direct comparison with Rubel%numerical re-
distribution. The fully developed two-dimensional free jet

velocity profile derived by Gortlé was employed for the
influx profile, i.e., 1.0 ; ; ; r r

—v(x)=(1—tantf(cx)), (36)

wherec=tanh 1(1/y/2).

The pressure distribution shown as a dashed line in Fig.
4 was obtained using the numerical method of Rdbéh
accordance with his suggestions, a uniformx41 grid >
spanning a %5 square was employed for the finite differ-
ence calculations. The maximum deviation between the two

0.8 1

06 1

Fully developed

methods of calculation is 1% and occurs at a locatiomx of oz} 0s05 / .
= 16 0=0.1

Figure 5 compares the predicted streamlines for an im- 0.0 s . . .
pinging, fully developed two-dimensional jet using both 00 08 10 15 20 25

methods of calculation. The parallel outflux boundary condi-

tion, which could only be approximated by an outflux stream FIG. 6. Influx velocity profiles used for calculations.
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1.0 T T T 1.04= T T T T
O Tu& Wood (H/D=1) ) —— Present Calculations
(¥:33 A Tu&Wood (H/D=4) 1 08 N e Rubel Calculations 1
----- Rubel Calculatlops A Experiment
—— Present Calculations
06 . 06 1
IS E
@ @
a 0=0.1 &
04 B 04} 4
02} N - 0.2 T
6=0.5 AN
oo . . 3 o . . . R i
0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 25 30

FIG. 7. Observed and predicted surface pressure distributions for twoFIG. 8. Comparison of predicted surface pressure distribution with experi-
dimensional developing jet impingement fe=0.1 ando=0.5. mental and numerical results for a fully-developed impinging axisymmetric
jet.

1. Fully developed jet impingement
sults. To facilitate comparison of the present model with that  the schlichting similarity solutidh for a fully devel-

of Rubel, we employ the developing jet velocity profile usedgpeq, axisymmetric free jet is used to define the influx ve-
in the previous calculations, locity profile, i.e.,

1
1- —o(r)= ————————.
TX” (37) YO (- nroe

This similarity solution is applicable to jet impingement for

. . . H/D>82* Surface pressure measurements for normally im-
where o is a spreading parameter. The difference between b y

this velocity profile and that for the fully developed jet is binging axisymmetric jets at these heights were made by

- . . S (12< < '
shown in Fig. 6. Figure 7 compares the surface pressure dISBradbur)? (12<H/D<20), Beltaos and Rajaratnaf(20

tributions predicted by the two models with the experimen-<H/D<66)’ and Giralt, Chia, and Tra¥y(8<H/D<20).

tally obtained pressure profles of Tu and Wodar D (28 R SR HITEN B0 8 I e et
=1 and H/D =4. From the empirical observations by

Reichard® of the mixing zone in a developing two- merical method. All are in excellent agreement.

dimensional free jet, these jet heights would roughly corre- S

spond to influx velocity profiles with spreading parameters?- Developing jet impingement

of 0=0.1 ando=0.5, respectively. The predicted widening Similarity of the surface pressure profiles breaks down

of the pressure profile due to potential core impingement isvhen the axisymmetric jet potential core impinges onto the

in good agreement with the presented data. surface H/D<8).?* Furthermore, we expect that the pres-
sure profile should approach that predicted by the inviscid

1 (38)
—v(X)= > 1+ erf

B. Axisymmetric jet

A major difference between treatment of the two-
dimensional jet and the axisymmetric jet is the handling of

Data - Giralt, Chia, & Trass

the parallel outflux boundary condition. It was shown in Sec. A e
IV A1 that parallel outflux implies an essentially parallel far- T v s |

field flow for the two-dimensional case, whereas the far-field o

streamlines resemble hyperbolas for the axisymmetric case. 06 oo 1
The hyperbolic streamlines approach the parallel outflux 55
condition infinitely far from the origin, so placement of the 04t _

outflux boundary at a finite radial location results in a pre-

mature parallelization of the outflux streamlines. This, in ozl

turn, decreases the velocity approaching the boundary. To T phrand Calculations

ensure that this effect does not impact the region of strong S
pressure gradient €4), the outflux boundary must be far- %0 o5 To Ts 20
ther from the origin than in the two-dimensional case. Sys- r

tem.atlc Var_latlon (1f the boundary locations revealed that IG. 9. Measurements of Giralt, Chia, and Tr44977 for various jet
ra(_jlal location ofa= 10 was sufficient for the present calcu- peights compared with present calculations for developing jet impingement
lations. and Strand’g1964) potential jet solution.
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¥
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' FIG. 12. Comparison of annular free jet velocity data at a downstream
FIG. 10. Developing jet velocity profiles. distance one outer diameter with H§9).
impinging potential jet model of Strafitlas the jet height is r2 112
decreased. Surface pressure measurements for impinging de- —v(r)=1-d,+2d,—|1- 57| osr<rp,
veloping jets have been made by Giralt, Chia, and Ffdss F'm Mm

several jet heights in the range £.2i/D<6.0. These data oD =(1te(r—rm?) 2 r=r,, (39

are presented in Fig. 9 along with Strand’s solution and the 5 ] ]

present calculations for several values of the potential cor@herecn=(y2—1)/(1-ry)?. Using these profiles, Rubel
radius, r ..re. NOte the good agreement between the data afound recirculation regions fad,, /r,>0.22, but was unable
the lowest jet height, Strand’s potential solution, and the calf© find solutions fod,, /r,>0.47. The present method yields
culations for the widest core radius. The developing jet veresults similar to Rubel fod,,/r,<<0.47. Solutions are also
locity profiles used for the calculations were defined suctPossible ford,,/r,>0.47. Figure 11 compares streamlines
thatu=1 for r=<r,.and with Eq.(38) describing the shape calculated with the present method with those calculated us-

of the mixing zone (> ... These profiles are presented in iNg Rubel’s methot! for r,=0.35 andd,=0.16. The stag-

Fig. 10. nation bubble appears as the area within the dividing stream-
line corresponding tay=0.
3. Stagnation bubbles and annular jet impingement Further increase in the core deficiency produces a veloc-

The shock waves produced within the potential core ofty profile that resembles the near-nozzle profile of a free
an underexpanded free jet cause a decrease in the centerl@anular jet. Figure 12 compares the profile calculated using
jet velocity?® The velocity profile downstream will resemble Ed. (39 (r,»=0.65, d,,=0.80) with the free annular jet ve-
the fully developed profile described in E8) with a ve-  locity data of Sheen, Chen, and J&hgt a downstream dis-
locity deficient core. The impingement of this type of profile tance of about one outer diameter. In this case, the inner
was also investigated numerically by Rubklyho predicted ~ diameter was close to one-half of the outer diameter. Be-
the conditions at which areas of recirculation would developrause of the severe core velocity deficiencel, {rm
near the stagnation point. Rubel used a family of velocity=1-23), the impingement of such a flow could not be treated
profiles described in terms of the location of the maximumWwith Rubel's method. Figure 13 depicts streamlines calcu-
velocity, r,,, and the core velocity deficiency,,—the dif-  lated with the present method for this case. Since no experi-
ference between the maximum and centerline velocitiegnental data was found in the literature on the size of the

These profiles were defined such that the centerline vorticitjecirculating region under an impinging annular jet, compari-
was nonzero fod,,>0, i.e., son with measurements is not possible. However, some pre-

Influx velocity profile

----- Rubel Calculations
—— Present Calculations

FIG. 11. Streamline plot with stagnation bubble fo;=0.35 andd,, FIG. 13. Streamline plot with overlaid influx velocity profile for annular jet
=0.16. impingement ¢,,=0.65 andd,,=0.80).
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T T T VI. CONCLUSION

A method for calculating the flow field for axisymmetric
and two-dimensional inviscid impingement flow is pre-
. sented. Expressions for the stream function were derived in
terms of the vorticity function distribution which was ap-
proximated by matching far-field and near-field expressions
. at prescribed locations, thus yielding a corrected solution.
Successive correction of the stream function distribution re-
sulted in a quickly converging solution. The method was
. applied to flow calculations for various two-dimensional and
axisymmetric impinging jet configurations, including annular
jet impingement, which has not been considered in previous

1.2 1

r inviscid calculations. The accuracy of the present calcula-
FIG. 14. Shape of recirculation zone for various core velocity deficiencieions is sufficient to demonstrate agreement with previous
(rm=0.60d,,=0.15,0.25,0.45,0.65). numerical results and with the available data.
ACKNOWLEDGMENT

- , , . This work was supported by the Federal Aviation Ad-
dictions of the shape of the recirculation region are presentefinistration under Grant No. FAA-93-G-060.

in Fig. 14, which depicts the streamlines corresponding to

=0 for several core velocity deficiencies. A plot of the | _ _ '
| ion f th ividin reamlin long the i nterlin R. Sherman, J. Grob, and W. Whitlock, “Dry surface cleaning using car-
ocations of the divid g strea e along the jet centerline bon dioxide snow,” J. Vac. Sci. Technol. 8, 1970(1991).

and the su_rfaceygj _andrd , respectively against the relat_'ve 2C. V. Tu and D. H. Wood, “Wall shear stress measurements beneath an
core velocity deficiencyd,, /r ,, for r ,=0.3 andr ,=0.6 is impinging jet,” Exp. Therm. Fluid Sci13, 364 (1996.
presented in Fig. 15. The critical value of the relative core *M. Bouainouche, N. Bourabaa, and B. Desmet, “Numerical study of the

. . . . . : wall shear stress produced by the impingement of a plane turbulent jet on
velocity deficiency leading to formation of a recirculation a plate,” Int. 3. Numer. Methods Heat Fluid Fioiy 548 (1997,

region agrees with Rubel's predicted value df,/r 4B. E. Russ and J. B. Talbot, “A method for measuring the adhesion
=0.22. The value of 4 could easily be determined experi- strength for powder coatings,” J. Adhes8, 257 (19989.

. . . . 5 “
mema"y, as it would be accompanled by a maximum in the’D- J. Phares, J. K. Holt, G. T. Smedley, and R. C. Flagan, “Method for

surface pressure profile. Experimental verification of thesecharacterization of adhesion properties of trace explosives in fingerprints
u pressure prorile. Experi verificat and fingerprint simulations,” J. Forensic Sdb, 762 (2000).

predictions would require knowledge of the velocity profile ¢k. Kataoka and T. Mizushina, “Local enhancement of the rate of heat
at the top of the impingement region. Reasonable agreementransfer in an impinging round jet by free-stream turbulence Pinceed-

with experiment would confirm the validity of inviscid mod- ings 5th International Heat Transfer Conferengage FC8.3, 1974.
Is f he i . . f | d d K. Kataoka, Y. Kamiyama, S. Hashimoto, and T. Komai, “Mass transfer
els for the impingement region of annular and underex- between a plane surface and an impinging jet,” J. Fluid Med® 91

panded jet impingement on a flat surface, and would support(1982.
Rubel’s’ suggestion that the inviscid total pressure defectsS- V. Alekseenko and D. M. Markovich, “Electrodiffusion diagnostics of

mechanism is responsible for the observed stagnationwa” shear stresses in impinging jets,” J. Appl. Electroche, 626
(1994.

bubbles under impinging underexpanded jets. 9G. T. Smedley, D. J. Phares, and R. C. Flagan, “Entrainment of fine
particles from surfaces by gas jets impinging at normal incidence,” Exp.
Fluids 26, 324(1999.
1D, J. Phares, G. T. Smedley, and R. C. Flagan, “The wall shear stress
produced by the normal impingement of a jet on a flat surface,” J. Fluid
a0 i i i i i i i Mech. (in press.
4. Martin, “Heat and mass transfer between impinging gas jets and solid
surfaces,” Adv. Heat Transfet3, 1 (1977.

25 -1, (0.6) . 12M. K. Looney and J. J. Walsh, “Mean-flow and turbulent characteristics
-y, (0.6) of free and impinging jet flows,” J. Fluid Meci47, 397 (1984.
20l Z fa ((%::;)) i 13T, Strand, “On the theory of normal ground impingement of axisymmetric
Ya O jets in inviscid incompressible flow,” Paper 64-424, AIAA, New York,
5 1964.
215 b M. T. Scholtz and O. Trass, “Mass transfer in a nonuniform impinging
> jet,” AIChE J. 16, 82 (1970.

15y, Parameswaran, “Study of reattaching wall jets,” Ph.D. thesis, Dept.
Mech. Eng. University of Waterloo, Ontario, Canada, 1973.
16A. Rubel, “Computations of jet impingement on a flat surface,” AIAA J.
1 18, 168(1980.
YA, Rubel, “Inviscid axisymmetric jet impingement with recirculating stag-
nation regions,” AIAA J.21, 351(1983.
00 02 04 06 08 10 12 14 16 183, M. Kuhlman and W. M. Cavage, “Jet ground vortex formation by
d annular jets,” J. Aircr.31, 794 (1994.
195, Beltaos and N. Rajaratnam, “Circular turbulent impinging jets,” J.
FIG. 15. Predicted dependence of dividing streamline location on core de- Hydraul. Div., Am. Soc. Civ. Engl00QHY10), 1313(1974.
ficiency forr,,=0.3,0.6. 203, J. Schauer and R. H. Eustis, “The flow development and heat transfer




Phys. Fluids, Vol. 12, No. 8, August 2000 The inviscid impingement of a jet with arbitrary . . . 2055

characteristics of plane turbulent impinging jets,” Tech Report 3, Dept. region in an axisymmetric turbulent jet,” Ind. Eng. Chem. Fundag21

Mech. Eng., Stanford University, Stanford, CA, 1963. (1977.

2!M. Kumada and I. Mabuchi, “Studies on the heat transfer of impinging 2°L. J. S. Bradbury, “The impact of an axisymmetric jet onto a normal
jet,” Bull. JISME 13, 77 (1970. ground,” Aeronaut. Q23, 141(1972.

223, Beltaos and N. Rajaratnam, “Plane turbulent impinging jets,” J. Hy- 2°C. D. Donaldson and R. S. Snedeker, “Mean properties of free and im-
draul. Res11, 29 (1973. pinging jets,” J. Fluid Mech45, 281 (1971).

24, Schlichting,Boundary Layer TheorgMcGraw-Hill, New York, 1960. 27H. J. Sheen, W. J. Chen, and S. Y. Jeng, “Recirculation zones of uncon-
24, Giralt, C. Chia, and O. Trass, “Characterization of the impingement fined and confined annular swirling jets,” AIAA 34, 572(1996.



